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Interactions between particulate inclusions in a smectic-A liquid crystal

M. S. Turner1,2,* and P. Sens3
1Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106

2TCM Group, Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom
3Departments of Physics and Materials, University of California at Santa Barbara, Santa Barbara, California 93106

~Received 1 November 1996!

We study theoretically the smectic mediated interactions between pointlike inclusions in a lamellar phase.
The two-body interaction is derived and we discuss the virial expansion in the limits of weak and strong
interactions. The leading order finite density corrections to the interaction potential are calculated using a mean
field theory, which allows the particle density, potential, and effective smectic moduli to be calculated self-
consistently. The effective bending modulus of the membranes is found to increase linearly with the particle
density. We also give the structure factorS(q) for small but finite particle density.@S1063-651X~97!50602-7#

PACS number~s!: 61.30.Cz, 82.70.Dd
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INTRODUCTION

It is well known that the physical properties of many sy
tems are highly sensitive to the presence of impurities
defects. A dramatic example is the increased conducti
observed in impure semiconductors@1#. Liquid crystalline
systems have been of interest to physicists for many dec
@2# and it seems natural to seek to understand the role
impurities in these systems too. We might also be motiva
by the numerous industrial applications of liquid crystals o
marked similarity with certain biological systems, e.g., c
membranes, which are known to contain many impurit
@3,4#. Some theoretical@5# and experimental@6# studies of
the interaction between particles embedded in a single~or
pair of! membrane~s! have been carried out. In addition w
recently@7# presented a description of aggregation proces
involving particles incorporated into a bulk (3d) lamellar
phase in which the aggregates were treated as noninterac
Our interest in such bulk systems has been fueled by re
experimental studies@8,9#. It is our aim here to study the
interactions between particulate inclusions residing in suc
bulk smectic phase.

This paper is organized as follows: In Sec. I we brie
discuss the background theory and introduce our model
the particle-layer interactions. We obtain the interact
potential for two particles embedded in a bulk smecticA
phase. We employ these results in Sec. II to construc
self-consistent mean field theory for the two-particle inter
tions at finite density. We calculate the linear correction
the interaction potential and find that this can be interpre
in terms of astiffeningof the membranes, with their com
pressibility unchanged. This is in contrast to one ear
study, albeit on a somewhat different system, which p
dicted a decrease in the bending modulus@10#. In Sec. III
we discuss the static structure factor for scattering fr
impurities embedded in a smectic phase. Finally we brie
discuss the far-field contribution to the second virial c
efficient for finite particle densities. We present brief co
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clusions in Sec. V. Throughout, we employ units in whi
kBT51.

I. THEORY FOR PARTICLE-SMECTIC COUPLING

In the smectic phase the layers areon averageflat and
equidistant with layer spacingd and normal in thez direc-
tion. Deformation of the average layer position away fro
this state may conveniently be parametrized by the cont
ous scalar displacement fieldu, which represents the norma
displacement of the layers in thez direction. Such a descrip
tion leads to the so-called Landau–de Gennes Hamilton
@2,11,12#. We model the effect of pointlike particles in th
smectic phase by including a term;r]zu in the energy den-
sity that represents the lowest order coupling between
particle densityr(r ) and the local layer compression~or ex-
pansion! ]zu. ~The reader may be surprised to learn th
coupling terms like;r¹ i

2u lead to identical results. This
subtle point will be discussed in a future article.! We omit
terms scaling like;r2, which corresponds to direct interpa
ticle interactions, as these depend on microscopic detail
the particles involved. It is our aim here to study only t
membrane-mediated interparticle interactions. Our coup
term is formally the simplest in that it is the only term qu
dratic in$r,u% involving only a first derivative that is accep
able on symmetry grounds. The HamiltonianH now reads

H5
B

2E d3r @~]zu!21l2~¹ i
2u!21br]zu#. ~1!

In this expression¹ i is the gradient operator in thex-y
plane, l5AK/B is a length characteristic of the smect
~typically of the order of the layer spacingd), andB and
K are respectively the compressional and bending modu
the smectic. The coupling constantb, with dimensions of
volume, controls the amplitude of the local deformation.
value depends on the microscopic details of the particle-la
interactions. The particles either provide a local inwar
pinch (b.0) or outwards push (b,0) to the neighboring
layer. Certain proteins@3,9# are known to bind to aqueou
surfactant membranes more or less fixing the layer separa
very locally. In such systemsb could be chosen so that
y,
R1275 © 1997 The American Physical Society
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R1276 55M. S. TURNER AND P. SENS
single particle fixes the local layer separation atd* . Such a
condition may be shown to imply@7# b.ld(d2d* ).

Minimization of Eq. ~1! and subsequent calculations a
most easily performed in Fourier space. The Fourier tra
form is defined byf q5*d3r f (r i ,z)e

i (qi•r i1qzz) with r i and
qi vectors in thex-y plane. Minimizing Eq.~1! with respect
to uq the energy is given by@7#

H5E d3q

~2p!3
Gqrqr2q5E d3r 8E d3rG~r2r 8!r~r !r~r 8!,

~2!

where

Gq52E0ld
2

qz
2

qz
21l2qi

4 , ~3!

with

E05
AKBb2

8l2d2
, ~4!

a number characterizing the energy scale of the interact
and, in real space

G~r !5
E0

8p S dzD
2S 12

r i
2

4luzu Dexp2 r i
2

4luzu
. ~5!

The fact that Eq.~5! diverges in the limitz→0 does not
reflect an underyling problem in the theory since the ene
is well behaved for densitiesr(r ) that are smoothly varying
@13#. The two-body interaction potential forz@d is approxi-
mately U12(r )52G(r ) @the factor 2 arises because of th
intrinsic double counting in Eq.~2!#.

From Eq. ~5! we see that the interaction between tw
particles is long ranged in thez direction and is anisotropic
and radially nonmonotonic. This anisotropy is characteriz
by the paraboloidr i

254luzu, which also appears in the clas
sical problem of the interaction between two dislocations
smecticA @2#, although the precise functional form is rath
different in this case. One can also show that the energy s
for the interaction potentialE0 is equal to the~self-! energy
of a single isolated particleaE0, to within a numerical pref-
actor a of order unity @7#. A quantitative estimate of this
prefactor formally requires an improvement in Eq.~1! and
also depends on microscopic details.

II. FINITE DENSITY CORRECTIONS TO THE TWO-
BODY INTERACTION: A SELF-CONSISTENT

MEAN FIELD THEORY

We now examine the effect of surrounding particles
the two-body interaction potential. We will employ a me
field theory in which the particle density and potential fiel
are determined self-consistently. Such an approach has
employed with success in many other physical proble
Perhaps the best known example is the Debye-Hu¨ckel theory
for electrolytes. In the present work we use the smectic
tential f ~in kBT units! determined via our modified
Landau–de Gennes functional~1!. We assume Boltzmann
statistics for the distribution of particles and solve the line
s-
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ized version of the resulting equations to obtain correctio
to the two-body interaction potential.

We calculate the potential fieldf(r ) due to a particle at
the origin and its associated correlated neighbors. Thus
energy required to move an infinitesimal number of inc
sionsdn from infinity to r is dnf(r ).

Invoking Boltzmann statistics the density field near t
particle is of the form

r~r !5 r̄e2f~r !1d~r !, ~6!

wherer̄ is the density at infinity and the termd(r ) fixes one
particle at the origin.

We may linearize Eq.~6! wheneverf!1, which is satis-
fied whenever the energy scaleE0!1. The linearized form
of Eq. ~6! is

r~r !5 r̄@12f~r !#1d~r !⇒rq5 r̄@~2p!3d~q!2fq#11.
~7!

Our second equation relates the potentialf to the density via
the bare two-body Green’s functionG. From Eq.~2! we have

f~r !5E d3r 8G~r2r 8!r~r 8!⇒fq5Gqrq . ~8!

Solving Eqs.~7! and ~8! for fq and substituting Eq.~3! we
find @14#

fq52
E0ld

2

12 r̄E0ld
2

qz
2

qz
21l82qi

4 , ~9!

where

l85~12 r̄E0ld
2!21/2l, ~10!

a result that is valid forqz!1/d. In some sense Eq.~10!
indicates that the range of the interactions is increasing w
the particle density. Transforming Eq.~9! we find that the
real space potential is well approximated by the followi
form for z@d:

f~r !5
E0

8p~12 r̄E0ld
2!1/2

S dzD
2S 12

r i
2

4l8uzu Dexp2 r i
2

4l8uzu
.

~11!

We may calculate the correction to the zero density inter
tion potential either by expanding Eq.~11! directly in powers
of r̄ or, equivalently, by expanding Eq.~9! before transform-
ing to real space. Writing the real space potent
f5G1df we find

df~r !5
r̄ld2E0

2

16p S dzD
2F11

r i
2

4luzu
2S r i

2

4luzu D
2Gexp2 r i

2

4luzu
,

~12!

where we neglect terms ofO( r̄2). This function is plotted in
Fig. 1. This finite density correction to the interactions c
be identified with weakly correlated three-body interactio

Finally we can examine the influence of the particles
the effectivemoduli K8 and B8. These moduli are those
which mimic the effect of the finite particle density. In th
limit of zero particle density they are merely the bare smec



g

pa

e
rre

c
la
t
in
w

m

u

e

re-

sity

ists

s
to
nge
nal
eld

rgy

q.
ng

at-
ort
ol-

off.
el-
s-
this

far

f

-

ddi-
ear

a
he
lts
the
fi-

55 R1277INTERACTIONS BETWEEN PARTICULATE INCLUSIONS . . .
moduli K andB introduced in Sec. I. However, identifyin
the scalingE0}AKB Eq. ~4! and l5AK/B we see that
E085E0(12 r̄E0ld

2)21/2 and Eq. ~10! together imply a
renormalization ofK to

K85
K

12 r̄E0ld
2
, ~13!

with B85B unchanged at leading order. Equation~13! indi-
cates an increase in the effective bending modulus with
ticle density.

III. STATIC STRUCTURE FACTOR

Static scattering measurements measure the ensembl
erage of the Fourier transform of the density-density co
lation function@15#

S~q!5Ca
2 1

N K E E d3rd3r 8r~r !r~r 8!eiq~r2r8!L , ~14!

whereCa is the scattering amplitude per inclusion andN is
the total number of particles. We wish to calculate this fun
tion for scattering from inclusions incorporated in a lamel
phase and assume that this signal can be isolated from
scattered by the lamellae. If we treat the inclusions as po
like and neglect the details of the short range interactions
may writeS(q) in terms of the two-body potentialf(r ) by
invoking Boltzmann statistics

S~q!5Ca
2 r̄E d3reiq•r2f~r !. ~15!

By assuming that the potentialf is small, which is often a
reasonable approximation for uncharged lyotropic syste
we may expand the exponential in Eq.~15! to obtainS(q)
for small but finiteq.

S~q!52Ca
2 r̄fq , ~16!

wherefq is given by Eq.~9!. This prediction allows for a
test of the present theory on two grounds. Firstly a struct
factor of the formS(q);qz

2/(qz
21l82qi

4) would provide
strong evidence that the particle-layer coupling in a giv

FIG. 1. Plot of the bare potential, or Greens functionG(r ) ~solid
line! Eq. ~5! and the finite density corrections to the potentialdf
~broken line! Eq. ~12! against r̃ i5r i /(4luzu)1/2. The function
G(r ) is shown in units where (E0 /8p)(d/z)251 and the correc-
tion df is in units where (r̄ld2E0

2/16p)(d/z)251.
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system is well described by the;r]zu term in Eq.~1!. Sec-
ondly the finite density corrections calculated in Sec. II p
dict variation of the lengthl8 with particle density according
to Eq. ~10!.

IV. AVERAGE PARTICLE INTERACTIONS AND THE
SECOND VIRIAL COEFFICIENT

For dilute systems an expansion of the free energy den
F/V in powers of the particle concentrationr̄ can usually be
performed. Provided that such an analytic expansion ex
the second virial coefficientBV is given by@16#

BV5
1

2E d3r ~12e2U12~r !!, ~17!

whereU12 is the two-body interaction potential for particle
separated by a vectorr and the zero of free energy is taken
be the pure smectic phase. If we consider only the long ra
membrane mediated interactions, neglecting any additio
microscopic short range forces, we can estimate the far fi
contribution toBV , in both the limitsE0!1 andE0@1.

The weak interaction limitE0!1 may often be appropri-
ate for lyotropic phases, in which the characteristic ene
scaleE0&1. In this regime the far field contributionBV

far may
be calculated by expanding the exponential factor in E
~17!. The second order term is found to give the leadi
order far field contribution

BV.2E0
2ld2 for E0!1, ~18!

which is negative, implying that the net interactions are
tractive. This result necessarily neglects all additional sh
range interactions and involves crudely cutting off the v
ume integral in Eq.~17! at z5nd ~with n of order unity!.
The numerical prefactor depends on the choice of this cut

The opposite, strong interactions, limit may often be r
evant for particles incorporated in thermotropic liquid cry
tals, such as the diblock copolymer lamellar phases. In
limit we can no longer expand the exponentiale2U12 in Eq.
~17! everywhere but can make a crude estimate of the
field contribution toBV by ~i! integrating Eq.~17! by steepest
descents in the regime whereU12@1 and~ii ! expanding the
exponential whenU12!1. We proceed by crudely cutting of
the integral atz5nd, as before, and find

BV
far.2ld2E0

23/2exp@E0/~4pe2n2!# for E0@1.
~19!

This represents a large~exponential! average attraction be
tween particles.

We emphasize again that these results neglect any a
tional short range interactions not described by the lin
coupling termbr]zu in Eq. ~1!.

CONCLUSION

We have studied the effect of particulate inclusions in
bulk smectic-A phase and have derived equations for t
energy of an arbitrary distribution of particles. These resu
are used to develop a self-consistent mean field theory for
particle distribution, which is used to study the effect of
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R1278 55M. S. TURNER AND P. SENS
nite particle density on the effective two-body interacti
potential. The correction to this potential is computed and
find that although the effective compressional modulus of
phase is unchanged, the effective bending modulus incre
linearly with the particle density according to Eq.~13!. This
result is in contrast to one, rather different, study of me
brane impurities, which predicted a decrease in the bend
modulus@10#, but is in qualitative agreement with the tren
observed for membranes densely decorated with PEG li
@17#. In addition both of these studies show a change inB ~an
increase in the first and a decrease at large densities in
second!. The qualitative differences with the present theo
are unsurprising in view of the differences between the s
tems. We give the static structure factor for the particles
s.
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suggest that direct measurements of this may provide a d
test of our theory. We also briefly discuss the second vi
coefficient for the mixed particle-lamellar system, noting th
the far-field interactions are always attractive on average
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