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Interactions between particulate inclusions in a smecti@ liquid crystal
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We study theoretically the smectic mediated interactions between pointlike inclusions in a lamellar phase.
The two-body interaction is derived and we discuss the virial expansion in the limits of weak and strong
interactions. The leading order finite density corrections to the interaction potential are calculated using a mean
field theory, which allows the particle density, potential, and effective smectic moduli to be calculated self-
consistently. The effective bending modulus of the membranes is found to increase linearly with the particle
density. We also give the structure facg{g) for small but finite particle densityS1063-651X97)50602-7

PACS numbd(s): 61.30.Cz, 82.70.Dd

INTRODUCTION clusions in Sec. V. Throughout, we employ units in which
kBT: 1 .
It is well known that the physical properties of many sys-
tems are highly sensitive to the presence of impurities or |. THEORY EOR PARTICLE-SMECTIC COUPLING
defects. A dramatic example is the increased conductivity .
observed in impure semiconductdrd]. Liquid crystalline In the smectic phase the layers ane averageflat and
systems have been of interest to physicists for many decad&§uidistant with layer spacind and normal in thez direc-
[2] and it seems natural to seek to understand the role dfon. Deformation of the average layer position away from
impurities in these systems too. We might also be motivatedhis state may conveniently be parametrized by the continu-
by the numerous industrial applications of liquid crystals or aoUs scalar displacement field which represents the normal
marked similarity with certain biological systems, e.g., celldisplacement of the layers in tizedirection. Such a descrip-
membranes, which are known to contain many impuritieéion leads to the so-called Landau—de Gennes Hamiltonian
[3,4]. Some theoretical5] and experimental6] studies of [2,11,13. We model the effect of pointlike particles in the
the interaction between particles embedded in a sitgle SMectic phase by including a termpd,u in the energy den-
pair ofy membranés) have been carried out. In addition we Sity that represents the lowest order coupling between the
recently[7] presented a description of aggregation processeRarticle densityp(r) and the local layer compressigor ex-
involving particles incorporated into a bulk B lamellar ~ pansion d,u. (The reader may be surprised to learn that
phase in which the aggregates were treated as noninteractirgpupling terms like~pV?u lead to identical results. This
Our interest in such bulk systems has been fueled by recesubtle point will be discussed in a future arti¢lgVe omit
experimental studief8,9]. It is our aim here to study the terms scaling like~ p2, which corresponds to direct interpar-
interactions between particulate inclusions residing in such &cle interactions, as these depend on microscopic details of
bulk smectic phase. the particles involved. It is our aim here to study only the
This paper is organized as follows: In Sec. | we brieflymembrane-mediated interparticle interactions. Our coupling
discuss the background theory and introduce our model fotlerm is formally the simplest in that it is the only term qua-
the particle-layer interactions. We obtain the interactiondratic in{p,u} involving only a first derivative that is accept-
potential for two particles embedded in a bulk smedtic- able on symmetry grounds. The Hamiltonizhnow reads
phase. We employ these results in Sec. Il to construct a
self-consistent mean field theory for the two-particle interac-
tions at finite density. We calculate the linear correction to
the interaction potential and find that this can be interpreted
in terms of astiffeningof the membranes, with their com- In this expressionV, is the gradient operator in the-y
pressibility unchanged. This is in contrast to one earlieplane, \=K/B is a length characteristic of the smectic
study, albeit on a somewhat different system, which pre{typically of the order of the layer spacimt), and B and
dicted a decrease in the bending modulli6]. In Sec. Ill K are respectively the compressional and bending moduli of
we discuss the static structure factor for scattering fromthe smectic. The coupling constagt with dimensions of
impurities embedded in a smectic phase. Finally we brieflwolume, controls the amplitude of the local deformation. Its
discuss the far-field contribution to the second virial co-value depends on the microscopic details of the particle-layer
efficient for finite particle densities. We present brief con-interactions. The particles either provide a local inwards
pinch (8>0) or outwards pushg<0) to the neighboring
layer. Certain protein§3,9] are known to bind to aqueous
*Present address: Department of Physics, Warwick Universitysurfactant membranes more or less fixing the layer separation
Coventry CV4 7AL, United Kingdom very locally. In such systemg could be chosen so that a

H= ;j d*r[(d )2+ N2(VEu) 2+ Bpau]. (D)
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single particle fixes the local layer separatiordat Such a  ized version of the resulting equations to obtain corrections
condition may be shown to imply7] f=Ad(d—d*). to the two-body interaction potential.

Minimization of Eq. (1) and subsequent calculations are ~ We calculate the potential fielg(r) due to a particle at
most easily performed in Fourier space. The Fourier transthe origin and its associated correlated neighbors. Thus the
form is defined byf,=[d3f(r|,2) €' 1" %2 with r) and  energy required to move an infinitesimal number of inclu-
q vectors in thex-y plane. Minimizing Eq.(1) with respect ~ sionson from infinity to r is ong(r).

to uq the energy is given bj7] Invoking Boltzmann statistics the density field near the
. particle is of the form
d*q _
H=f(27)36qpqp_q=f d"’r’f d*rG(r—r")p(r)p(r'), p(r)=pe ?"+8(r), (6)

2 wherep is the density at infinity and the terd(r) fixes one
particle at the origin.

where
We may linearize Eq(6) wheneverg<1, which is satis-
. q§ fied whenever the energy scadig<1. The linearized form
Gy=—EoNd*——57, 3 of Eq. (6) is
q NN () q ()_ B
: p(r)=p[1—¢(r)]+8(r)=pq=p[(27)5(q) — ¢hq] +1.
with 7)
B JVKB? Our second equation relates the potentidab the density via
Eo="gy 27 (4) the bare two-body Green’s functi@. From Eq.(2) we have
8\ed
a nur_nber characterizing the energy scale of the interactions ¢(r):f d3r’G(r—r’)p(r’)=>¢q=quq. ®)
and, in real space
E, (d 2 rﬁ rﬁ Solving Egs.(7) and (8) for ¢4 and substituting Eq(3) we
S — - find [14
G 87T(z) (1 4)\|z|)8Xp_ w7 © [14]
, , . Eohd? q2
The fact that Eq(5) diverges in the limitz—0 does not b=~ —— PTERNE L 9
reflect an underyling problem in the theory since the energy 1-pEohd? 9z T A77q

is well behaved for densitigs(r) that are smoothly varying
[13]. The two-body interaction potential fa&d is approxi-
.maftelyulz(r)=26(r). [thg factor 2 arises because of the N =(1—pEohd?) Y2\, (10)
intrinsic double counting in Eq2)].

From Eq.(5) we see that the interaction between twoa result that is valid forg,<1/d. In some sense Eq10)
particles is long ranged in thedirection and is anisotropic indicates that the range of the interactions is increasing with
and radially nonmonotonic. This anisotropy is characterizedhe particle density. Transforming E¢P) we find that the
by the paraboloidﬁ=4)\|z|, which also appears in the clas- real space potential is well approximated by the following
sical problem of the interaction between two dislocations inform for z>d:
smecticA [2], although the precise functional form is rather

where

different in this case. One can also show that the energy scale Eg d\? rﬁ rﬁ
for the interaction potentidE, is equal to theself-) energy b(r)= 87(1— pEohd?)Y? z N 4\'|Z] exp= AN'|Z|
of a single isolated particleE,, to within a numerical pref- 0 (12)

actor o of order unity[7]. A quantitative estimate of this
prefactor formally requires an improvement in Ed) and  We may calculate the correction to the zero density interac-

also depends on microscopic details. tion potential either by expanding E@.1) directly in powers
of p or, equivalently, by expanding E() before transform-
IIl. FINITE DENSITY CORRECTIONS TO THE TWO- ing to real space. Writing the real space potential
BODY INTERACTION: A SELF-CONSISTENT ¢=G+ ¢ we find
MEAN FIELD THEORY — d?E2 2

p 5(d\? r re r
We now examine the effect of surrounding particles on 9¢(1)= 160 (E) m_(“m) exp— 4)\||‘z| ,
the two-body interaction potential. We will employ a mean (12)
field theory in which the particle density and potential fields
are determined self-consistently. Such an approach has bewere we neglect terms @(p?). This function is plotted in
employed with success in many other physical problemsFig. 1. This finite density correction to the interactions can
Perhaps the best known example is the Debyekidltheory  be identified with weakly correlated three-body interactions.
for electrolytes. In the present work we use the smectic po- Finally we can examine the influence of the particles on
tential ¢ (in kgT unity determined via our modified the effectivemoduli K' and B’. These moduli are those
Landau—de Gennes functionél). We assume Boltzmann which mimic the effect of the finite particle density. In the
statistics for the distribution of particles and solve the lineardimit of zero particle density they are merely the bare smectic
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system is well described by thepd,u term in Eq.(1). Sec-
\\ ondly the finite density corrections calculated in Sec. Il pre-
dict variation of the lengtin” with particle density according
to Eq.(10).

[=}

IV. AVERAGE PARTICLE INTERACTIONS AND THE
SECOND VIRIAL COEFFICIENT

Y
kY
kY
\
\
[}
1
\
\
1
1
1
[}
[}
[
[}
1
1
1
[}
1
[}

1
:
]
]
]
]
]
i
]
]
i
¥
1
]
[}
7
]

y W W For dilute systems an expansion of the free energy density
ST 0.2 T F/V in powers of the particle concentratipncan usually be
} performed. Provided that such an analytic expansion exists
the second virial coefficierB,, is given by[16]

FIG. 1. Plot of the bare potential, or Greens functi@®fr) (solid
line) Eq. (5) and the finite density corrections to the potentigh 1
(broken ling Eq. (12) againstT =r/(4\|z])¥2 The function szzf dr(1—e YNy, 17
G(r) is shown in units whereH,/87)(d/z)?=1 and the correc-
tion 8¢t is in units where g\ d”Eg/16m)(d/2)*=1. whereU,, is the two-body interaction potential for particles
. . . . . separated by a vectorand the zero of free energy is taken to
modullK andB introduced in Sec. |. However, identifying be the pure smectic phase. If we consider only the long range
th,e scallngE)oc\/lé_B_lllizq. (4) and A=yK/B we see thal emprane mediated interactions, neglecting any additional
Eo=Eo(1—pEord") and Eq. (10) together imply & microscopic short range forces, we can estimate the far field
renormalization oK to contribution toBy,, in both the limitsE,<1 andEy>1.

The weak interaction limiEg<<1 may often be appropri-

K’ = K (13) ate for lyotropic phases, in which the characteristic energy

1—pEond?’ scaleEg=1. In this regime the far field contributid®® may

be calculated by expanding the exponential factor in Eq.

with B’=B unchanged at leading order. Equatid®) indi-  (17). The second order term is found to give the leading

cates an increase in the effective bending modulus with parrder far field contribution
ticle density.

By=—E3\d? for Eo<1, (18
. STATIC STRUCTURE FACTOR L. . . . . .
_ _ which is negative, implying that the net interactions are at-
Static scattering measurements measure the ensemble aractive. This result necessarily neglects all additional short
erage of th_e Fourier transform of the density-density correrange interactions and involves crudely cutting off the vol-
lation function[15] ume integral in Eq(17) at z=vd (with v of order unity.
1 The numerical prefactor depends on the choice of this cutoff.
_~2o 3. 431 N aigr—r") The opposite, strong interactions, limit may often be rel-
S(@ C"N <f j drdrp(rp(rije > (14 evant for particles incorporated in thermotropic liquid crys-

tals, such as the diblock copolymer lamellar phases. In this
whereC,, is the scattering amplitude per inclusion aNds limit we can no longer expand the exponengal’12 in Eq.

the total number of particles. We wish to calculate this func-(17) everywhere but can make a crude estimate of the far
tion for scattering from inclusions incorporated in a lamellarfield contribution toBy, by (i) integrating Eq(17) by steepest
phase and assume that this signal can be isolated from thg@éscents in the regime whelts ,>1 and(ii) expanding the

scattered by the lamellae. If we treat the inclusions as pointexponential whet ;,<1. We proceed by crudely cutting off
like and neglect the details of the short range interactions Wene integral az= vd, as before, and find

may write S(q) in terms of the two-body potentiab(r) by
invoking Boltzmann statistics B~ —\d?E, 3%exf Eo/(4me®v?)] for Eg>1.

(19

_ 2 3, 4iQ-r—
S(q)=Cgp | dre!@ =20, (19 This represents a largexponential average attraction be-

tween particles.
By assuming that the potential is small, which is often a We emphasize again that these results neglect any addi-
reasonable approximation for uncharged lyotropic systemgjonal short range interactions not described by the linear

we may expand the exponential in EHd5) to obtainS(q) coupling termBpd,u in Eq. (1).
for small but finiteq.

— CONCLUSION

S(a)=—-Cipdq, (16)

We have studied the effect of particulate inclusions in a

where ¢ is given by Eq.(9). This prediction allows for a bulk smecticA phase and have derived equations for the

test of the present theory on two grounds. Firstly a structurenergy of an arbitrary distribution of particles. These results

factor of the form S(q)~q§/(q§+)\’2qﬁ‘) would provide are used to develop a self-consistent mean field theory for the
strong evidence that the particle-layer coupling in a giverparticle distribution, which is used to study the effect of fi-
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nite particle density on the effective two-body interactionsuggest that direct measurements of this may provide a direct
potential. The correction to this potential is computed and wetest of our theory. We also briefly discuss the second virial
find that although the effective compressional modulus of theoefficient for the mixed particle-lamellar system, noting that
phase is unchanged, the effective bending modulus increasgse far-field interactions are always attractive on average.
linearly with the particle density according to E4.3). This

result is in contrast to one, rather different, study of mem-

brane impurities, yvh_|ch prgd|c_ted a decrease in the bending ACKNOWLEDGMENTS
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